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syn- (2b) and anti- (3b) cis- 11,12,dichloro-9,10-dihydro-9,lO-ethanoanthracene-l-carboxylic acids have been 
synthesized. Geometric assignments were made o n  the basis o f  their 13C chemical shifts along w i t h  those o f  model 
compounds. T h e  apparent pK,'s o f  2b and 9,10-dihydro-9,10-ethanoanthracene-l-carboxylic acid (9b) (previously 
reported by Stock) in aqueous ethanol are identical w i t h i n  experimental error. Th is  result is predicted by the Kirk- 
wood-Westheimer equation and is a consequence o f  the angular orientat ion o f  the dipole w i t h  respect t o  the site 
o f  ionization. T h e  apparent pK, o f  3b is approximately 0.47 uni ts  smaller than t h a t  o f  9b. These results are br ie f ly  
discussed in terms o f  the Kirkwood-Westheimer electrostatic f ie ld  model. 

The Kirkwood-Westheimer expression' for calculating 
electrostatic effects of dipolar substituents upon acidities of 
carboxylic acids includes the angular orientation of the dipole 
with respect to the site of ionization (eq 1). 

K eu cos 0 
(1) 

That both the sign and magnitude of dipolar substituent ef- 
fects can be dependent upon the angular disposition of the 
dipole relative to the carboxylate group has been experi- 
mentally verifiedS2 

An interesting consequence of this electrostatic model is the 
prediction that for a dipole oriented perpendicular to a line 
joining its midpoint to the ionizing proton, the substituent 
effect should vanish. That  is, for B = go", K = KO. We report 
here a case where the resultant dipole of a vicinal dichloride 
possesses this geometric characteristic. 

Results 
Methyl syn-cis- 11,12-dichloro-9,10-dihydro-9,lO-ethano- 

1-anthroate (2a) and the corresponding anti-cis dichloro 
isomer 3a were prepared by the cycloaddition of cis- 1,2-di- 

log - = 
K O  2.30 kTR2DE 

chloroethene and 1-methyl anthroate (I) .  The isomers were 
separated by a combination of chromatography and crystal- 
lization. Progress in effecting the separation was followed by 
NMR monitoring of the relative intensities of the C g  proton 
signals (peri to COZMe), the singlets for which lie downfield 
(6  6.12 for 2a and 5.73 for 3a) from the remaining nonaromatic 
protons. The geometric assignments for 2a and 3a were made 

CO.,Me 

1 

'6 2a 

+ I -  + 
HAC\C1 

3a 



A Kirkwood-Westheimer Vanished Substituent Effect J .  Org. Chem., Vol. 42, No. 3, 1977 535 

Table I. Apparent pK,'s5 of Several Bridged Anthracene- 
1-carboxylic Acids in 50% Aqueous Ethanol a t  25 "C 

Acid PKa 

2b 5.94,5.94 
3b 5.48, 5.50 
9b" 5.96 f 0.01 

Average of five runs determined potentiometrically in 50% 
by weight aqueous ethanol. 

on the basis of the patterns of 13C chemical shifts observed for 
the ring carbons." They are consistent with the pK,'s deter- 
mined for the corresponding acids 2b and 3b obtained by 
hydrolysis of the esters. 

The apparent pK,'s for 2b and 3b were determined by po- 
tentiometric titration in 50% by volume aqueous ethanol a t  
25 "C. The results are summarized in Table I. Included for 
comparison is the apparent pK, for 9,10-ethano-9,10-dihy- 
dro-1-anthroic acid (9bi reported by Stock.4 

Discussion 
An inspection of the data in Table I reveals the expected 

increase in acidity for the anti dichloro acid 3b compared with 
the unsubstituted acid 9b. The magnitude of this difference 
is comparable to the ApK, (0.57) observed for the analogues 
bearing the carboxylate group a t  the 2 position.2a In the 
present case the shorter distance separating the site of ion- 
ization and the resultant dipole is compensated by a larger 
acute angle, 0, found in the K-W expression and perhaps by 
a larger effective dielectric constant. By contrast, the apparent 
pK, of the syn-dichloro acid 2b is, within experimental error, 
the same as that for the unsubstituted acid 9b. This vanished 
substituent effect is predicted by the K-W equation. The 
results are not accommodated by the classical inductive 
model. The pertinent structural features of 2b and 3b are il- 

2b 3b 
lustrated. The distances R and the angles 0 were calculated 
assuming the geometry of ethanoanthracene adopted by Ar- 
busov and Veresh~hagen.~,~ The distances and angles are with 
reference to a resultant dipole which bisects the C11-C12 bond 
and lies in the plane containing the two chlorines.s For pur- 
poses of K-W calculations, the magnitude of the resultant 
dipole was estimated. Since two carbon-chlorine dipoles in 
close proximity are not electrically independent of one an- 
other, a vector summation of two single C-C1 bond moments 
cannot provide a reliable r e ~ u l t a n t . ~  Consequently the resul- 
tant dipole formed from the two C-Cl bonds in 2b and 3b was 
calculated from dipole moments experimentally determined2a 
for 9,10-dihydro-9,10-ethanoanthracene ( 8 )  and cis- 11,12- 

dichloro-9,10-dihydro-9,lO-ethanoanthracene (6). The dipole 
moment found for 8 is 0.92 D; that for 6 is 2.92 D. The mea- 
sured dipole moment of 6 can be attributed to two contrib- 
uting dipoles. The.two carbon-chlorine dipoles (forming the 
"resultant" dipole whose value is sought) are assumed to lie 
in a plane 60" off the axis which bisects the C11-C12 bond and 
bisects a line joining C g  and (210. The dipole moment of 8 is 
collinear with this same axis with the negative end in the di- 
rection of the region flanked by the aromatic rings. Using these 
vector quantities, the "resultant" moment formed by the two 
C-C1 bonds is calculated to be 3.27 D. Table I1 lists the cal- 
culated values for R's and e's, as well as for DE'O and log KIKo. 
The Tanford modificationll was adopted with respect to 
placement of charges and dipoles relative to the cavity surface. 
The dielectric constant of the solvent (50% by weight aqueous 
ethanol) is 49.12 

Thus the K-W expression predicts a vanished substituent 
effect for 2b.13 This is the direct result of the value of 0, which 
is approximately 90" within the limits of uncertainty of the 
structural parameters used in its e~ t imat i0n . I~  The calculated 
ApK, for the anti acid 3b is, a t  best, in fair agreement with the 
experimental value when the Tanford ellipse cavity is em- 
ployed. The Tanford spherical model leads to a major un- 
derestimation of DE. 

Experimental SectionLd 
Anthraquinone-1-carboxylic Acid. Using the procedure devel- 

oped by Coulson,ls freshly recrystallized benzanthrone (20.0 g, 0.087 
mol) was oxidized with 82 g of chromium trioxide. The product was 
obtained in 69% yield as a beige-colored solid, mp 298-300.5 "C (lit.4 
mp 292-293 "C). 

1-Anthroic acid was prepared by the zinc reduction of anthra- 
quinone-1-carboxylic acid as described by Stock.4 Best results were 
obtained when the zinc was activated with 6 N HC1 immediately prior 
to use. The product was obtained in 73% yield, mp 248-250 "C (lit.? 
mp 249 "C). 

1-Methyl anthroate (1) was prepared in 93% yield by esterification 
with ethereal diazomethane. The ester was obtained as yellow plates, 
mp 100.5-103.5 "C (lit.16 mp 104 "C), and was used without further 
purification in the reactions with cis-dichloroethylene. 

Methyl syn- and anti-cis-l1,12-Dichloro-9,10-dihydro-9,10- 
ethano-1-anthroates (2a and 3a). A sample of 5.0 g (0.021 mol) of 
1-methyl anthroate, 0.1 g of 2,6-di-tert-butylphenol, 6.8 ml of freshly 
distilled cis- 1,2-dichloroethylene, and 20 ml of toluene were combined 
in a heavy-walled, 25 X 200 mm tube. The mixture was degassed and 
the tube sealed. The tube was heated in a steel bomb at 194-203 "C 
for 72 h. The tube was opened and the mixture examined by NMR. 
The spectrum showed that over 90% of the methyl anthroate had 
reacted. Separation of the products and starting ester was performed 
by liquid chromatography in a 25 X 300 mm column packed with 
100-200 mesh Florisil in hexane. The esters were eluted in the fol- 
lowing order with partial resolution: methyl anthroate (-411 hex- 
ane-benzene), syn ester 2a (-111 hexane-benzene), and anti ester 3a 
(-pure benzene). Recrystallizations of appropriate fractions from 
CC14 afforded 2a as a white solid, mp 156-158 "C, and 3a as a white 
solid, mp 178-179 "C. Yields from several cycloadditions averaged 
in the range of 15-20% for each pure isomer. 

The mass spectra of both isomers show a parent peak at mle 332 
and an intense peak at mle 301 (M+ - OCHa). The infrared spectra 
(KBr disks) are very similar. They show the expected carbonyl stretch 
at approximately 1715 cm-'. Small differences are observable in the 
600-800-~m-~ region. A distinct difference in NMR spectra (taken 
in CC14) is observed. The C-9 proton of the syn (2a) ester appears a t  
6.12 ppm. The C-9 proton of the anti (3a) ester appears at 5.73 ppm. 
A similar deshielding of C-9 protons in a number of 1-substituted 
anthracenes has been described.'; 

Table 11. Parameters and Calculated Values of Log K / K H  for syn- (2b) and anti- (3b) cis-1 1,12-dichloro-9,10-dihydro- 
9,lO-ethano-1-carboxylic Acids 

Parameters Tanford sphere Tanford ellipse Measured 
R l k  u., D 8 DE k g  KIKH D E  Log KIKH Log KxIKH 

2b 5.44 3.27 89 4.24 0.01 7.33 0.01 0.02 f 0.02 
3b 6.01 3.27 46.4 4.50 0.70 8.64 0.36 0.47 f 0.02 
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Anal. Calcd for C1sH14ClZO2: C, 64.88; H, 4.20; C1,21.30. Found for 
2a: C, 64.95; H, 4.25; CI, 21.18. For  3a: C, 64.86; H, 4.28; C1, 21.56. 

syn -cis- 1 1,12-Dichloro-9,1O-dihydro-9,lO-ethano- 1 -anthroic 
Acid (2b). A 1.30-g (3.91 mmol)  sample o f  2a was combined wi th 50 
ml o f  methanolic N a O H  (0.55 g N a O H  in 50 ml o f  methanol) and 
boi led under ref lux for I h. T h e  mix tue  was cooled, d i lu ted t o  200 ml 
w i th  water, and filtered. T h e  f i l t rate was acidified w i t h  6 N HCI. The 
whi te  sol id was collected, repeatedly washed w i t h  water, and dried. 
T h e  acid was thus obtained in 96.4% yield, mp 266-269 "C. Recrys- 
tal l izat ion f rom benzene raised the mel t ing po in t  t o  267-270 "C. 

T h e  mass spectrum shows the parent i o n  a t  mle 318. T h e  infrared 
spectrum (KBr disk) shows a broad carboxylic acid 0-H band cen- 
tered a t  3040 cni-' and a carbonyl a t  1680 cm-'. T h e  NMR spectrum 
(MerSO-ds) shows ( in  addit ion to  the aromatic protons) two apparent 
singlets a t  4.78 and 6.05 ppm. T h e  former is assigned t o  the protons 
a t  C-10, '2-11, and C-12. and the la t ter  t o  the  pro ton  a t  C-9. 

Anal. Calcd for CI;HI&I~OZ: C, 63.95; H, 3.76; C1,22.2. Found: C, 
64.15; H, 3.88: Cl, 22.0. 

an ti-cis- 1 1,l Z-Dichloro-9,10-dihydro-9,10-ethano- 1 -anthroic 
Acid (3b). This  acid was prepared by hydrolysis o f  3a as described 
for the syn isomer. T h e  acid was in i t ia l ly  obtained in 96% yield as 
whi te  crystals, mp 251-254.5 "C. Recrystallization f rom chloroform 
yielded the pure acid. mp 258-259.5 "C. 

T h e  mass spectrum shows the parent ion  a t  mle 318. T h e  infrared 
spectrum is similar to  t h a t  o f  i ts  isomer 2b w i t h  sl ight differences 
observable in the f ingerprint region. T h e  NMR spectrum o f  3b 
(MezSO-ds) shows, in addition to  the aromatic proton signals, the C-9 
proton as a singlet at 5.85 ppm. The peaks for the C-10, (2-11, and C-12 
protons coincide t o  give an apparent singlet a t  4.73 ppm. 

Anal. Calcd for CI;HI?CI?O?: C, 63.95; H, 3.76; CI, 22.2. Found: C, 
63.81; H, 4.00; C1. 22.3. 
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